
Towards Model-and-Code Consistency Checking

Markus Riedl-Ehrenleitner
Johannes Kepler University

Linz, Austria
EMail: Markus.Riedl@jku.at

Andreas Demuth
Johannes Kepler University

Linz, Austria
EMail: Andreas.Demuth@jku.at

Alexander Egyed
Johannes Kepler University

Linz, Austria
EMail: Alexander.Egyed@jku.at

Abstract—In model-driven engineering, design models allow
for efficient designing without considering implementation details.
Still, it is crucial that design models and source code are in
sync. Unfortunately, both artifacts do evolve frequently and
concurrently which causes them to drift apart over time. Even
though technologies such as model-to-code transformations are
commonly employed to keep design models and source code
synchronized, those technologies typically still require unguided,
manual adaptations. Hence, they do not effectively prevent
inconsistencies from being introduced. In this paper, we outline a
novel approach for checking consistency between design models
and source code. Our approach aims at detecting inconsistencies
instantly and informing developers about a project’s consistency
status live during development.

Keywords—Model-and-Code Consistency Checking, Model-
Driven Enginering, Incremental Consistency Checking.

I. INTRODUCTION

Model-Driven Engineering (MDE) [1] promotes the use of
models as first-class development artifacts to address the in-
ability of third-generation languages to alleviate the complexity
of platforms and to express domain concepts effectively. How-
ever, source code remains an important development artifact as
it embodies the executable system. Thus, it is of crucial impor-
tance that both, design models and source code, are consistent.
Otherwise, the executable system deployed to a customer may
differ in functionality and quality from the design model – a
severe problem if the design model was validated against the
customer’s needs or documents the system.

Commonly, model-to-code transformations [2] are em-
ployed to address this problem by generating source code
automatically from design models. However, design models
do not include all information necessary to generate fully
functional implementations [3]. Moreover, design models typ-
ically allow for different implementations yet model-to-code
transformations typically apply a fixed set of transformation
rules. Thus, an automatically produced solution may be correct
but not necessarily the one intended by developers (e.g., a
translation of an unbounded multiplicity defined in UML [4]
may always use a List although the semantics might call for
a Set instead).

Therefore, manual adaptation of source code is inevitable.
Since for those adaptations usually no further guidance is
provided, they might introduce inconsistencies between design
models and source code. The issue of inconsistencies becomes
even worse when considering that, especially with the increas-
ing popularity of iterative development processes (e.g., Spiral
Model [5], Extreme Programming (XP) [6] or Scrum [7]),
design models and source code are evolved concurrently [8].

This means that both development artifacts evolve frequently
and independently, a situation in which even sophisticated, au-
tomatic, consistency-preserving model-to-code transformation
technologies (e.g., [3], [9], [10], [11], [12], [13]) do encounter
serious issues that are hard to solve [3]. For instance, manual
changes in the code may inadvertently be overwritten or – if
the synchronization tries to avoid that – redundancies may be
introduced.

Overall, existing approaches that are commonly employed
for keeping design models and source code consistent do
not address the issue sufficiently – especially with frequently
evolving artifacts: they typically require additional, manual
adaptations for which only little support is provided and which
may still introduce inconsistencies. Existing technologies are
thus mostly helpful for generating an initial version of code, if
none existed. However, to support the continuous evolution
of model and code, consistency detection mechanisms are
required.

In this short paper, we outline a novel approach to detect
inconsistencies between design models and source code, called
Model-and-Code Consistency Checking (MCCC). MCCC is
an incremental and highly scalable approach and it aims to
provide instant, detailed feedback about a project’s consistency
status and thus helps developers to not let design models
and source code drift apart. In order to detect inconsistencies
between artifacts in development projects, consistency rules
written in traditional constraint languages (such as OCL [14])
are applied. A developer can change these rules at will so
that they are applicable to different development projects.
In contrast to other approaches that try to automate artifact
synchronization, MCCC fully supports concurrent evolution
of development artifacts and avoids otherwise common issues
such as lost updates or incomplete information.

The proposed contributions of this work are thus:

1) A mechanism for live consistency checking among
concurrent evolving development artifacts.

2) Adaptable consistency rules that allow for alterna-
tive interpretations and semantics of artifact (design
model or source code) elements.

Next, we focus on these contribution.

II. MOTIVATIONAL EXAMPLE

This section introduces an illustrative example and dis-
cusses typical issues regarding model-and-code evolution in
the context of the provided example. We chose a small imple-
mentation of Conway’s Game of Life (GoL) [15], a simulation

��
���XXXXXXXXXXXzXX

XXX
XXX

XXXy

���
���

���
��:

�
 �	�

�
 �	«interface»
Field

+ getWidth () : Integer
+ getHeight () : Integer
+ isSet (row : Integer, column :

Integer) : Boolean
+ getNext () : Field

JGameOfLifeView

- exit : Boolean

+ start ()
+ stop ()
+ addFieldStep ()

FieldFactory

+ initRandomSeed ()
+ createRandom ()
+ createRandom ()

FieldImpl

field[*] : Boolean
+ nextField[*] : Boolean

calcField ()

GameOfLife

+ main ()
+ show ()

«use»

«use»

*

0..1

- view

(a) GoL Class Diagram

1 p u b l i c c l a s s F i e l d I m p l implements F i e l d {
2 p r o t e c t e d L i s t <Boolean > f i e l d ;
3 p u b l i c L i s t <Boolean > n e x t F i e l d ;
4
5 }

(b) Generated FieldImpl

1 p u b l i c c l a s s F i e l d I m p l implements F i e l d {
2 p r o t e c t e d L i s t < Ce l l > f i e l d ;
3 p u b l i c L i s t < Ce l l > n e x t F i e l d ;
4
5 }
6 p u b l i c c l a s s C e l l { . . }

(c) Desired FieldImpl

4code

Fig. 1. Field Evolution

of cellular development based on specific rules. It is a non-
player game; based on a random generated population, cell
generations are computed one at a time. Figure 1(a) depicts the
class diagram of the system. The class GameOfLife contains
the main-method in which data structures are initialized and
an infinite loop, calculating at each iteration a new generation,
is started. This is visualized in the sequence diagram shown in
Fig. 2(a). A second initialization sequence, in which a failure
case is modeled, is shown in Fig. 2(b). Each generation of
a GoL population is calculated from classes implementing
the interface Field (e.g., FieldImpl). Notice that the first
implementation (Fig. 1(b)) is generated from the given design
model (Fig. 1(a)), as indicated by the gears in Fig. 1.

A. Field

As an example of a change, consider that a developer de-
cides to use a dedicated type Cell to represent individual cells
in GoL, instead of using boolean values (as depicted by 4code

in Fig. 1, the updated state of the source code is shown in
Fig. 1(c)). With this change, the developer created an inconsis-
tency between the design model and the source code as the type
Boolean does not match the type Cell. Note that after this
code evolution, an automated synchronization may either over-
ride the previous code evolution, or generate a new declaration
(i.e., List<boolean> nextField) besides the existing,
manually updated declaration List<Cell> nextField,
which is incorrect. Either way, trying to automatically handle
the manually introduced inconsistency may lead to unintended
— and potentially still inconsistent — results.

B. Sequence

While the example above demonstrated a problem that
some might consider a nuisance, there are much more severe
and less trivial examples. Consider the following example
of sequence diagrams. It is understood that a sequence of
messages defined in a sequence diagram should be found
in code as well [16] – if a message is not reflected by a
corresponding method call in source code, this should be
considered as inconsistency.

1 p u b l i c s t a t i c vo id main (S t r i n g [] a r g s) {
2 f i n a l GameOfLife g o l = new GameOfLife () ;
3 g o l . show () ;
4 g o l . view . s t a r t () ;
5 F i e l d f i e l d = F i e l d F a c t o r y
6 . crea teRandom (8 0 0 , 6 0 0 , 0 . 2 f) ;
7 f o r (; ;) {
8 t r y {
9 g o l . view . a d d F i e l d S t e p (f i e l d) ;

10 f i e l d = f i e l d . g e t N e x t () ;
11 } ca tch (I n t e r r u p t e d E x c e p t i o n e) {
12 g o l . view . s t o p () ;
13 }
14 }
15
16 }

Listing 1. Java Initialization Sequence

To implement the behavior specified in the sequence di-
agrams, a developer produced the implementation shown in
Listing. 1. Notice that the code actually contains an incon-
sistency. The sequence diagram, modeling the failure case
(Fig. 2(b)), specifies that if a failure occurs, the simulation
must be correctly ended (i.e., the endless loop must be stopped
and the visualization must be ended with a stop()-call).
However, the try-catch block (lines 8- 13 in Listing 1) is inside
the endless loop, effectively stopping the visualization but not
the endless loop. While the first sequence diagram (Fig. 2(a))
is reflected in the source code, the specified behavior in the
failure case is not correctly reflected. Therefore, the source
code does not conform to all its specifying views.

The interweaving of multiple models into one consis-
tent source code still poses significant challenges. Currently
there exists no technology effectively and correctly handling
such scenarios. We thus propose Model-and-Code Consistency
Checking (MCCC) to at least detect these problems as incon-
sistencies.

:Field:FieldFactory:JGameOfLifeView:GameOfLife

loop

[0,*]

1: addFieldStep

2: getNext

1.3.1: createRandom

1.2: start

1.3: createRandom

1: main
1.1: show

(a) Initialization Sequence

(b) Alternative Initialization Sequence

Fig. 2. Sequence

III. PRINCIPLES OF MODEL-AND-CODE-CONSISTENCY
CHECKING

Model-and-Code Consistency Checking (MCCC) addresses
the issue of inconsistent development artifacts by continuously
evaluating a project’s consistency status. It guides develop-
ers through the software development cycle with immediate
feedback on inconsistencies. In doing so, it effectively helps
developers to take measures to not let design models and
source code drift apart. While consistency checking between
design models and source code is far from trivial, relatively
simple tasks are necessary for our approach to be applicable
to development projects. The main task is writing a set of
consistency rules that meet the needs of the project or domain
or adapt the current set provided.

A. Consistency Rules

MCCC relies on consistency rules provided by de-
velopers. These rules define invariants that the design
models and source code are required to fulfill in or-
der to be consistent. Let us illustrate how a developer
could state such a consistency rule. Listing 2 shows
a stylized informal example of an explicit consistency
rule between UML::Propertys and Java::Fields:
1 UML: : P r o p e r t y p
2 p . name== j a v a F i e l d (p) . name &&
3 j a v a C l a s s (p . owner)== j a v a F i e l d (p) . owner i m p l i e s
4 i f p . c a r d i n a l i t y =∗ then
5 j a v a F i e l d (p) i s a c o l l e c t i o n or an a r r a y

Listing 2. Stylized Consistency Rule

The rule defines that if both the UML::Property and
its corresponding Java::Field (given by the function
javaField) exhibit the same name and both are owned by
the same class (the corresponding Java class of a UML type is
obtained by the function javaClass1), the multiplicity con-
dition in lines 4-5 applies. The condition in the if-expression
defines that if the given multiplicity (i.e., in UML a cardinality
line 4) equals "*" the equivalent Java field must either be a
collection or an array.

Before we can write consistency rules such as the one
shown in Listing 2, we have to address the following problems:
i) design models and source code are not integrated in a single
cohesive language (how can a consistency rule between model
and code be written without them being integrated?), ii) design
models and source code do not allow inter-model navigation
(how can one navigate conveniently among artifacts?), iii)
design model and source code do generate different change
sets 4 for each artifact (how can artifact changes be handled
uniformly?).

B. Framework

To address these problems, we developed a model-and-
code consistency checking framework that integrates artifacts
of different sources and provides navigation links that allow
for simple writing of explicitly stated consistency rules and
their efficient evaluation – even after artifact evolution –
by an incremental consistency checker. An overview of the
framework is given in Fig. 3.

Consistency Checker

?

Integration Layer

?�
 �	Model
?�
 �	Code

6
Source��DD

��DD

e
���

��DD

��DD

e
-

� j�4model

�
4model

I4mod
artifact

I4code

I
4code

Developer Developer

parsed

uses

accessaccess
navigate

Consistency Rules

Fig. 3. Overview

C. Artifact Integration

Both, design models and source code, are typical de-
velopment artifacts in MDE. For detecting inconsistencies
between those artifacts, they must be integrated in a manner
that a consistency checker can access them in a unified way.
Therefore, the metamodels of both artifacts must be integrated
and inter-model navigation enabled.

1) Metamodel: Unfortunately, model and code artifacts are
typically instances of different metamodels and are edited in
different development tools. For example, a UML model ele-
ment is an instance of an UML metamodel element and edited
in a UML modeling tool. In turn, Java code needs to conform
to the Java language specification and is typically edited in
a Java programming tool. Moreover, retrieving information
from models differs significantly from accessing source code.
We provide a uniform, in-memory access to both, using the

1Functions javaField and javaClass will be discussed in Sec-
tion III-C2

already in-memory design model and generating an in-memory
representation for source code. Following, we refer to Code
and Model as the in-memory representation of source code
and design model, respectively – see bottom of Fig. 3. Both
are accessible via the Integration Layer.

Although both, design model and source code, are now
commonly accessible through a common infrastructure, each
artifact still conforms to its respective metamodel, which is
a problem for consistency checkers that typically work with
a single metamodel only (e.g., [17], [18], [19]). This requires
additional integration which is handled by the Integration
Layer. It provides a single coherent metamodel for both
Model and Code to the consistency checker (i.e., the con-
sistency checker works with a single emulated metamodel
that contains the metaclasses of both artifacts) in Fig. 3.
Additionally, the unified metamodel provides the possibility of
using Navigation Links between artifact elements (e.g.,
to allow a specific UML::Class to be linked to a specific
Java::Class). Next, we discuss the benefits of such direct
navigation between artifact elements and how it is handled by
the integration layer.

2) Navigation: Even with a unified view on Model and
Code, both remain independent artifacts and elements of both
are typically not linked explicitly. As such, it is hard to know
which Model and Code elements to match. Revisiting the
consistency rule discussed in Section III-A, note how the
functions javaClass and javaField are used to navigate
between Model and Code elements. Indeed, this is convenient
for writing explicit consistency rules, but how can those
methods return Code elements for given Model elements?
The solution are explicit navigation links that establish bidirec-
tional relations between Model and Code elements. Note that
although a developer may have clear relations in mind (e.g., a
UML::Class and a Java::Class with equal names), such
explicit links must be present in order to enable convenient
navigation. The alternative would be tedious navigation from
an artificial root element of a Model- or Source-element to
the “corresponding” element having the correct name. There-
fore, the Integration Layer augments the respective
metamodel of the artifact with additional functionality for
direct and bidirectonal navigation between model and code.

Such Navigation Links can either be implicit
based on an inherent property of an Model or Code element
as mentioned above, or explicitly stated.

IV. DISCUSSION

In the following, we discuss the greater context of this work
in terms of artifact integration, possible collaboration patterns
and its implications on incremental consistency checking.

A. Artifact Integration

A key principle of MCCC is the integration of design
model and source code in a way that a consistency checker can
access both in a unified manner. This integration must happen
on the level of metamodels and furthermore for specific artifact
elements to navigate among design model and source code
in a consistency rule. Both metamodels – design model and
source code metamodel – must provide the means to navigate
among the artifacts. Furthermore, Navigation Links (i.e.,

ToolModel

ToolCode

MM

Code

class XYZ
class ABC

MM

Model
Model

Code

∆code

∆model

C
C

Fig. 4. Cloud

links among artifact elements that allow for bidirectional
navigation) among artifact elements must be introduced. So
far, this summarizes the principles of the previous section.

However, these principles may be realized quite differently.
An intuitive solution is to alter both metamodels, so that
they exhibit references to elements of another metamodel.
Furthermore, Navigation Links can be constructed from
information accessible in both design model and source code
(e.g., if a UML::Class and Java::Class have the same
name, they are considered opposites) or even expressed explic-
itly in corresponding artifact elements.

However, artificially appending navigation references to
metamodels is to some degree depending on the used tools
and their technologies (i.e., the IBM Rational Software Ar-
chitect [20] uses the Eclipse Modeling Framework (EMF) [9]
to represent both the UML metamodel and created models
thereof, while ArgoUML [21] uses its own implementation of
the UML standard, which can not easily be adapted). There-
fore, a solution should be independent of actually used tools
and their technology. Furthermore, Navigation Links
among artifact elements may not easily be constructed from
information in both artifacts or not easily explicitly stated.

Therefore, we propose to use an architecture, called De-
signSpace. All development artifacts (and their metamodels)
are stored in the DesignSpace using a unified representation.
The consistency checker, integrated with the DesignSpace,
is thus able to access all development artifacts in a unified
manner. The unified representation is continuously kept in sync
with development artifacts in their respective tools through
adapters. This ensured that the unified representation of the
artifact is always up-to-date, this is depicted in Fig. 4.

The DesignSpace also allows to append the unified repre-
sentation of both metamodels with inter-model navigation ref-
erences (depicted as unidirectional dashed arrow in Fig. 4 be-
tween MM Code and MM Model), without adapting the tools
or their metamodels. Furthermore, Navigation Links can
be established by adding navigation references to correspond-
ing artifact elements, depicted as unidirectional arrow in Fig. 4
between Model and Code.

Please note that the concept of instanceof is repre-
sented in Fig. 4 as double headed dashed arrow. Both, source
code and design models, are instances of their respective meta-
models. A (potentially bidirectional) Navigation Link is
an instance of a inter-model navigation reference.

B. Collaboration

The integration of diverse development artifacts further-
more provides the possibility of supporting collaboration pat-
terns among developers. Traditionally, a developer obtains
a working copy of a design model or source code from a
repository and adapts the artifact in private, before deciding to
make the adaptations publicly available (e.g., by committing).
This constitutes the collaboration philosophy promoted by
SVN [22] or Git [23].

Typically, a developer work with either the model or
the code but not necessarily both at a same time. However,
changing one artifact may easily cause inconsistencies with the
other artifact, as illustrated in Section II, and detecting such
inconsistencies requires a consistency checker to access both
kinds of artifacts involved: the adapted one (e.g., the source
code in the private working copy), and the one remaining un-
changed (e.g., design models in the repository). Unfortunately,
the unchanged artifact is typically not available locally for a
standard consistency checker.

By adding working copies to the DesignSpace, a consis-
tency checker then has access to both the privately adapted
artifact and the public, shared artifact. Thus, inconsistencies
between an artifact in a working copy and another artifact in
the repository can be detected efficiently (as both artifacts are
stored in the DesignSpace) without requiring design/program-
ming tool integration.

C. Incremental Consistency Checking

Consistency checking between design models and source
code can be performed at different times, e.g., before a
developer decides to publish changes, at predefined intervals,
or if the developer prompts the consistency checker to do
so. After a developer is being notified about inconsistencies,
he/she can either resolve the inconsistency, inform another
developer, or even ignore the inconsistencies temporarily.

Incremental consistency checking, at the finest granularity
possible (i.e., after every atomic change), means that con-
sistency information about the current state of the system
is available at all times. Deciding when to present this in-
formation to users is not of relevance for our approach but
depends primarily on the kind of tool that is used, the kind of
artifact that is edited, the kind of changes that are performed,
and the user’s individual preferences. For example, display-
ing updated consistency information might not be desired
during a code refactoring but only after all changes have
been executed. In contrast, a developer might prefer to be
informed about the current consistency status even after atomic
changes when working on a design model. However, doing
consistency checking only at fixed intervals would mean that
in the latter case there is no information available about the
current consistency state of the system by the time it is desired.

Note that because of the efficiency of incremental con-
sistency checking [24], frequently performing incremental re-
validation after atomic changes does not impose an interruption
in the workflow of developers. In addition, it is trivial to
perform incremental consistency checking and delay only the
presentation of consistency information while it might be hard
to construct that information on demand when consistency
checks are performed at fixed intervals.

D. Repairs

After detecting inconsistencies, a subsequent action is to
eventually resolve them [25]. Automatically derived repairs
may be provided to a developer in order to resolve incon-
sistencies [26], [27]. Suppose that a developer may want to
rename a Java::Class, and a consistency rule imposes that
its corresponding UML::Class needs to exhibit the same
name. A possible automatic refactoring could be to rename
as well the UML::Class.

V. RELATED WORK

MDE is a wide and active field of study, different chal-
lenges such as modeling languages, separation of concern,
and model manipulation and management have to be faced.
Following, research related to our approach will be discussed.
The Eclipse Modeling Framework (EMF) [9] is a modeling
framework with a code generation mechanism. A new annota-
tion to mark source code elements as generated is introduced,
presence or absence determines if the associated code element
is overwritten at code regeneration. In contrast to MCCC, EMF
generates code and tries to handle the update problem via
a @generated annotation. Nevertheless, adaptations of the
code generator to adapt to specific needs are limited to certain
details and does not allow full control.

Zheng et al. [3] introduced an approach called 1.x-way
architecture-implementation mapping, implemented in Arch-
Studio 4, an Eclipse-based architecture development environ-
ment. Important principles are i) the deep separation of gener-
ated (architecture-prescribed) and non-generated (user-defined)
code, ii) an architecture change model, iii) architecture based
code regeneration, and iv) architecture change notification. In
their work, changes in the architecture affect only architecture-
prescribed code. This approach mitigates the update problem
via deep separation principle but as well tries to enforce model
and code consistency by generating code.

Heidenreich et al. [28] presented the Java Model Parser
and Printer (JaMoPP), which treats Java code like any other
model by defining a full metamodel and text syntax specifica-
tion. They allow generating Java code from model and vice
versa. A Java program can be specified as a whole in the
model and then generated, consistency is only achieved by
construction and as well do not consider incremental update
of either.

Cicozzi et al. [29] go a step further, based on the CHESS
Modelling Language [30] and the Action Language for Foun-
dational UML (ALF) [31] they produce a fully functional
embedded systems, with explicit traceability links from source
to model for further monitoring and adjustment to require-
ments. Opposite to our approach code can not optimized by
hand, iterations only occur after validating feedback from the
executed system.

DiaSpec [10] uses a specific Architectural Description
Language (ADL) [32] that integrates a new concept called
interaction contract, that is part of the architecture descrip-
tion and describes allowed interactions between components.
Its implementation is generated into a for the programmer
unmodifiable framework and therefore does not support co-
evolution of either model and code. They also rely only on the

Java compiler to detect inconsistencies. ArchJava [33] unifies
a Java program with its architecture. It is a mapping approach,
the language itself is extended to provide mappings in code.

A similar approach in terms of architecture description as
part of the implementation is Archface [12]. New interface
mechanisms are used as ADL in the design phase, in imple-
mentation phases programming interfaces. To specify the col-
laboration among components, Aspect-Oriented Programming
(AOP) [34] concepts such as pointcut and advice are
utilized. Model and code in both ArchJava and Archface are
not two separate entities, both have to evolve as soon as one
changes.

Murphy et al. [35] use a batch like approach, that tries
to exploit the drift between architecture and implementation
instead of preventing it. A high-level structural model that is
“good-enough” for reasoning is produced. An engineer first
defines a model of interest. Then, a model of the source code
(depicting certain actions: call graph, event interactions) is
extracted. Finally, mappings have to be defined between the
models. Given the high-level structural model, then the source
model and the mappings, a software reflexion model
is computed to determine inconsistencies. This approach is
closest to MCCC, however consistency checking is not done
incrementally.

VI. CONCLUSION AND FUTURE WORK

In this paper, we outlined the principles of MCCC, a
novel approach for model-and-code consistency checking that
detects inconsistencies between design models and source
code. For future work, we will develop a proof-of-concept
implementation and conduct case studies with industrial de-
velopment projects. Moreover, we plan to integrate approaches
for the fixing of inconsistencies in our implementation and
to increase support for distributed development by providing
a consistency checking environment that integrates data from
different development tools.

ACKNOWLEDGEMENTS

We gratefully acknowledge the Austrian Science Fund
(FWF): P 25289-N15 and P 25513-N15

REFERENCES

[1] D. C. Schmidt, “Guest editor’s introduction: Model-driven engineering,”
IEEE Computer, vol. 39, no. 2, pp. 25–31, 2006.

[2] S. Sendall and W. Kozaczynski, “Model transformation: The heart and
soul of model-driven software development,” IEEE Software, vol. 20,
no. 5, pp. 42–45, 2003.

[3] Y. Zheng and R. N. Taylor, “Enhancing architecture-implementation
conformance with change management and support for behavioral
mapping,” in ICSE, pp. 628–638, 2012.

[4] O. M. Group, Unified Modeling Language UML Version 2.4.1
http://www.omg.org/spec/UML/2.4.1. OMG, 2010.

[5] B. W. Boehm, “A spiral model of software development and enhance-
ment,” IEEE Computer, vol. 21, no. 5, pp. 61–72, 1988.

[6] K. Beck and C. Andres, Extreme Programming Explained: Embrace
Change (2nd Edition). Addison-Wesley Professional, 2004.

[7] K. Schwaber and M. Beedle, Agile Software Development with Scrum.
Upper Saddle River, NJ, USA: Prentice Hall PTR, 1st ed., 2001.

[8] B. Hailpern and P. L. Tarr, “Model-driven development: The good, the
bad, and the ugly,” IBM Systems Journal, vol. 45, no. 3, pp. 451–462,
2006.

[9] D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks, EMF: Eclipse
Modeling Framework 2.0. Addison-Wesley Professional, 2nd ed., 2009.

[10] D. Cassou, E. Balland, C. Consel, and J. L. Lawall, “Leveraging
software architectures to guide and verify the development of sense/-
compute/control applications,” in ICSE, pp. 431–440, 2011.

[11] J. Aldrich, C. Chambers, and D. Notkin, “Archjava: connecting software
architecture to implementation,” in ICSE, pp. 187–197, 2002.

[12] N. Ubayashi, J. Nomura, and T. Tamai, “Archface: a contract place
where architectural design and code meet together,” in ICSE, vol. 1,
pp. 75–84, 2010.

[13] M. Shaw, R. DeLine, D. V. Klein, T. L. Ross, D. M. Young, and
G. Zelesnik, “Abstractions for software architecture and tools to support
them,” IEEE Trans. Software Eng., vol. 21, no. 4, pp. 314–335, 1995.

[14] OMG, ISO/IEC 19507 Information technology - Object Management
Group Object Constraint Language (OCL). ISO, 2012.

[15] M. Gardner, “The fantastic combinations of John Conway’s new soli-
taire game “life”,” Scientific American, vol. 223, pp. 120–123, Oct.
1970.

[16] Z. Micskei and H. Waeselynck, “The many meanings of uml 2 sequence
diagrams: a survey,” Software and System Modeling, vol. 10, no. 4,
pp. 489–514, 2011.

[17] A. Reder and A. Egyed, “Model/analyzer: a tool for detecting, visualiz-
ing and fixing design errors in UML,” in ASE (C. Pecheur, J. Andrews,
and E. D. Nitto, eds.), pp. 347–348, ACM, 2010.

[18] C. Nentwich, L. Capra, W. Emmerich, and A. Finkelstein, “xlinkit: a
consistency checking and smart link generation service,” ACM Trans.
Internet Techn., vol. 2, no. 2, pp. 151–185, 2002.

[19] C. Nentwich, W. Emmerich, A. Finkelstein, and E. Ellmer, “Flexible
consistency checking,” ACM Trans. Softw. Eng. Methodol., vol. 12,
no. 1, pp. 28–63, 2003.

[20] “IBM Rational Software Architect
https://www.ibm.com/developerworks/ rational/products/rsa/ ,2013..”

[21] “ArgoUML http://argouml.tigris.org/ ,2013..”
[22] B. Collins-Sussman, B. W. Fitzpatrick, and C. M. Pilato, Version control

with subversion - next generation open source version control. O’Reilly,
2004.

[23] J. Loeliger, Version Control with Git - Powerful techniques for central-
ized and distributed project management. O’Reilly, 2009.

[24] A. Reder and A. Egyed, “Incremental consistency checking for complex
design rules and larger model changes,” in MoDELS, pp. 202–218, 2012.

[25] R. Balzer, “Tolerating Inconsistency,” in ICSE, pp. 158–165, 1991.
[26] A. Reder and A. Egyed, “Computing repair trees for resolving incon-

sistencies in design models,” in ASE, pp. 220–229, 2012.
[27] C. Nentwich, W. Emmerich, and A. Finkelstein, “Consistency Manage-

ment with Repair Actions,” in ICSE, pp. 455–464, 2003.
[28] F. Heidenreich, J. Johannes, M. Seifert, and C. Wende, “Closing the

gap between modelling and java,” in SLE, pp. 374–383, 2009.
[29] F. Ciccozzi, A. Cicchetti, and M. Sjödin, “Towards a round-trip support

for model-driven engineering of embedded systems,” in EUROMICRO-
SEAA, pp. 200–208, 2011.

[30] C. Project, D2.1 CHESS Modelling Language and Editor. ARTEMIS
JU Distribution, 2013.

[31] O. M. Group, Action Language for Foundational UML (ALF)
http://www.omg.org/spec/ALF/1.0.1/Beta3/PDF. OMG, 2013.

[32] N. Medvidovic and R. N. Taylor, “A classification and compari-
son framework for software architecture description languages,” IEEE
Trans. Software Eng., vol. 26, no. 1, pp. 70–93, 2000.

[33] J. Aldrich, C. Chambers, and D. Notkin, “Architectural reasoning in
archjava,” in ECOOP, pp. 334–367, 2002.

[34] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes, J.-M.
Loingtier, and J. Irwin, “Aspect-oriented programming,” in ECOOP,
pp. 220–242, 1997.

[35] G. C. Murphy, D. Notkin, and K. J. Sullivan, “Software reflexion
models: Bridging the gap between design and implementation,” IEEE
Trans. Software Eng., vol. 27, no. 4, pp. 364–380, 2001.

